Computer-Checked Mathematics
A Formal Proof of the Odd Order Theorem

Assia Mahboubi
Joint work with

The Mathematical Components team:

(Finite) Groups

Abstract structure for:

- (finite) sets of things
- that can be reversed and combined.

Typical example: operators that preserve a shape.
Pocket finite group theory
Many other examples...

\[e = x^0 = x^{n+1} \]

\[\mathbb{Z}_n, \text{ the cycle of order } n + 1 \]

...and applications: combinatorics, chemistry, cryptography,...
A (finite) group G is:
- A (finite) set: G;
- A binary law: $g \ast h$ or gh;
- A neutral element: 1;

such that:
- The group law is associative;
- Every element g has an inverse: g^{-1}.
Formal definition

A (finite) group G is:
- A (finite) set: G;
- A binary law: $g * h$ or gh;
- A neutral element: 1;

such that:
- The group law is associative;
- Every element g has an inverse: g^{-1}.

Vocabulary:
- Abelian group = commutative group
- Order of a group = cardinal of its underlying set
Classification

Given a property on finite groups, enumerate the possible isomorphism classes for each cardinal.
Classification

Given a property on finite groups, enumerate the possible isomorphism classes for each cardinal.

• Multiplication tables?
Classification

Given a property on finite groups, enumerate the possible isomorphism classes for each cardinal.

- Multiplication tables? Not informative enough.
Classification

Given a property on \textit{finite} groups, enumerate the possible isomorphism classes for each cardinal.

- Multiplication tables? Not informative enough.
- For instance, decomposition in smaller groups is better.
Classification of abelian groups

A finite abelian group G is (isomorphic to) a product of cycles:

$$G = \mathbb{Z} / p_1^{k_1} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_s^{k_s} \mathbb{Z}$$

with p_1, \ldots, p_k prime numbers.

Remarks:

- The order of G is equal to $p_1^{k_1} \ldots p_s^{k_s}$.
- Here the $(p_i)_{i=1\ldots s}$ are not necessarily distinct.
Example: groups of order 4

\[\mathbb{Z}_4 \]

\[n = 4 = 2^2 \]

\[\mathbb{Z}_2 \times \mathbb{Z}_2 \]

\[n = 4 = 2 \times 2 \]
Example: groups of order 4

\[\mathbb{Z}_4 \]
\[n = 4 = 2^2 \]

\[\mathbb{Z}_2 \times \mathbb{Z}_2 \]
\[n = 4 = 2 \times 2 \]
Cartesian product

Let G and H be two finite groups.

Then $G \times H$ has a structure of groups with law:

$$(g_1, h_1) \ast (g_2, h_2) := (g_1 \ast g_2, h_1 \ast h_2)$$

If G and H are abelian, then so is $G \times H$.
Dihedral group D_6

This is a group of order 6.
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \simeq \mathbb{Z}_3$,
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \cong \mathbb{Z}_3$, $\{e, s\} \cong \mathbb{Z}_2$
Dihedral group D_6

This is a group of order 6. It contains: $\{e, r, r^2\} \simeq \mathbb{Z}_3$, $\{e, s\} \simeq \mathbb{Z}_2$ and rs and r^2s.
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \cong \mathbb{Z}_3$, $\{e, s\} \cong \mathbb{Z}_2$ and rs and r^2s.
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \simeq \mathbb{Z}_3$, $\{e, s\} \simeq \mathbb{Z}_2$ and rs and r^2s.
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \cong \mathbb{Z}_3$, $\{e, s\} \cong \mathbb{Z}_2$ and rs and r^2s.
Dihedral group D_6

This is a group of order 6.
It contains: $\{e, r, r^2\} \cong \mathbb{Z}_3$, $\{e, s\} \cong \mathbb{Z}_2$ and rs and r^2s.

But $rs = sr^{-1} \neq sr : D_6$ is not $\mathbb{Z}_3 \times \mathbb{Z}_2$
Dihedral group D_{2n}

The carrier set of D_{2n} “is” indeed $\mathbb{Z}_n \times \mathbb{Z}_2$, but its law is:

$$(\mathbb{Z}_n \times \mathbb{Z}_2)^2 \rightarrow \mathbb{Z}_n \times \mathbb{Z}_2$$

$$(r_1, s_1) \ast (r_2, s_2) = (r_1 r_2^{\epsilon(s_1)}, s_1 s_2)$$

with $\epsilon(s) = -1$ and $\epsilon(s) = 1$.

D_{2n} is (isomorphic to) the semi-direct product $\mathbb{Z}_n \rtimes \mathbb{Z}_2$.
Example: groups of order 6

\[\mathbb{Z}_6 = \mathbb{Z}_3 \times \mathbb{Z}_2 \]

\[D_6 \]
Example: groups of order 6

\[\mathbb{Z}_6 = \mathbb{Z}_3 \times \mathbb{Z}_2 \]

\[D_6 \]
Normal subgroups

Subgroups $H \triangleleft G$ do not necessarily define quotients G/H.

This requires a normal subgroup $H \triangleleft G$:

$$(Hg_1)(Hg_2) = Hg_1g_2 \quad \text{for every } g_1, g_2 \in G$$

or equivalently:

$$g^{-1}Hg = H \quad \text{for every } g \in G$$
A group G is simple if it has no trivial normal subgroup:

- the only quotients G/H are $G/1 = G$ and $G/G = 1$.
- they are building blocks, like primes to natural numbers.
Simple groups

A group G is simple if it has no trivial normal subgroup:

• the only quotients G/H are $G/1 = G$ and $G/G = 1$.
• they are building blocks, like primes to natural numbers.

Examples:

• \mathbb{Z}_p with p a prime: cyclic groups;
• A_n for $n \leq 5$: even permutations on n letters;
• ...
Decomposition of a group

• Existence of prime decomposition:
 Any number \(n \) is a product of prime numbers.
 These primes are called the prime factors of \(n \).
Decomposition of a group

• Existence of prime decomposition:
 Any number n is a product of prime numbers.
 These primes are called the prime factors of n.

• Existence of composition series:
 For any finite group G, there exists a sequence of subgroups:
 \[\{e\} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G \]
 such that for all k, G_{k+1}/G_k is simple.
 Quotients G_{k+1}/G_k are called factors of G.
Uniqueness of the decomposition

- Prime decomposition uniqueness
 For any number \(n \), two decompositions of \(n \) into prime factors are the same up to permutation.

- Jordan-Hölder uniqueness
 For any group \(G \), two composition series for \(G \) have the same factors up to (isomorphism and) permutation.
Classification

Unfortunately the analogy with arithmetic stops pretty early:

- Same (multiset of) prime factors \Rightarrow equal numbers.
- Same (multiset of) factors $\not\Rightarrow$ isomorphic finite groups.

\Rightarrow Classifying finite groups is difficult.
\Rightarrow Classifying finite simple groups is already very difficult.
Unfortunately the analogy with arithmetic stops pretty early:

- Same (multiset of) prime factors \Rightarrow equal numbers.
Classification

Unfortunately the analogy with arithmetic stops pretty early:

- Same (multiset of) prime factors \Rightarrow equal numbers.
- Same (multiset of) factors $\not\Rightarrow$ isomorphic finite groups.
Classification

Unfortunately the analogy with arithmetic stops pretty early:

- Same (multiset of) prime factors \Rightarrow equal numbers.
- Same (multiset of) factors $\not\Rightarrow$ isomorphic finite groups.

\Rightarrow Classifying finite groups is difficult.
Classification

Unfortunately the analogy with arithmetic stops pretty early:

- Same (multiset of) prime factors \Rightarrow equal numbers.
- Same (multiset of) factors $\not \Rightarrow$ isomorphic finite groups.

\Rightarrow Classifying finite groups is difficult.
\Rightarrow Classifying finite simple groups is already very difficult.
Classification of finite simple groups

Finite simple groups are:

- Cycles of prime order $\mathbb{Z}/p\mathbb{Z}$
- Alternating groups A_n for $n \leq 5$
- Lie-type groups
- 26 sporadic groups.

Classification of finite simple groups

Finite simple groups are:

- Cycles of prime order \(\mathbb{Z}/p\mathbb{Z} \)
- Alternating groups \(A_n \) for \(n \leq 5 \)
- Lie-type groups
- 26 sporadic groups.

Considered completed in 2004, after a false start in 1981.

(Aschbacher, 2004)
Classification of finite simple groups

Finite simple groups are:

- Cycles of prime order $\mathbb{Z}/p\mathbb{Z}$ by the Odd order theorem
- Alternating groups A_n for $n \leq 5$
- Lie-type groups
- 26 sporadic groups.

Considered completed in 2004, after a false start in 1981.

(Aschbacher, 2004)
The Odd Order Theorem

Theorem (Feit - Thompson, 1963):

Every simple group of odd order is cyclic.
The Odd Order Theorem

Theorem (Feit - Thompson, 1963):

Every simple group of odd order is cyclic.

- Conjectured (at least) by Burnside in 1911.
The Odd Order Theorem

Theorem (Feit - Thompson, 1963):

Every simple group of odd order is cyclic.

- Conjectured (at least) by Burnside in 1911.
The Odd Order Theorem

Theorem (Feit - Thompson, 1963):

Every simple group of odd order is cyclic.

- Conjectured (at least) by Burnside in 1911.
- Original published proof:
 one entire volume of the Pacific Journal of Mathematics

A collective simplification work ⇒ two volumes
(Bender - Glauberman, 1994; Peterfalvi, 2000).

Assia Mahboubi – Computer-Checked Mathematics
The Odd Order Theorem

Theorem (Feit - Thompson, 1963) :

Every finite group of odd order is solvable.

Theorem (Suzuki, 1957) :

Every (CA) group of odd order is solvable.

• G is (CA) := $x \sim y$ iff $xy = yx$ is an equivalence over G^\times.
The Odd Order Theorem

Common structure to (Suzuki, 1957) and (FT, 1963):

- Postulate a minimal counterexample G
The Odd Order Theorem

Common structure to (Suzuki, 1957) and (FT, 1963):

- Postulate a minimal counterexample G
- Study its maximal proper subgroups:
 - **Local analysis**: study of subgroups of order p^k
The Odd Order Theorem

Common structure to (Suzuki, 1957) and (FT, 1963):

- Postulate a minimal counterexample G
- Study its maximal proper subgroups:
 - Local analysis: study of subgroups of order p^k
 - Character theory: study traces of representations of a group (as matrices over \mathbb{C} or \mathbb{F}_p)

But Suzuki’s original proof is much more concise . . .
The Odd Order Theorem

Common structure to (Suzuki, 1957) and (FT, 1963):

- Postulate a minimal counterexample G
- Study its maximal proper subgroups:
 - Local analysis: study of subgroups of order p^k
 - Character theory: study traces of representations of a group (as matrices over \mathbb{C} or \mathbb{F}_p)
- Obtain a contradiction via (character) norm inequalities.
The Odd Order Theorem

Common structure to (Suzuki, 1957) and (FT, 1963):

- Postulate a minimal counterexample \(G \)
- Study its maximal proper subgroups:
 - Local analysis: study of subgroups of order \(p^k \)
 - Character theory: study traces of representations of a group (as matrices over \(\mathbb{C} \) or \(\mathbb{F}_p \))
- Obtain a contradiction via (character) norm inequalities.

But Suzuki’s original proof is much more concise . . .
Proof

Maximal proper subgroups of a minimal counterexample:
Proof

Maximal proper subgroups of a minimal counterexample:

Local Analysis

Types I II III IV V
Proof

Maximal proper subgroups of a minimal counterexample:

Local Analysis

Types I II III IV V

Character Theory
Proof

Maximal proper subgroups of a minimal counterexample:

Local Analysis

Types I / II / III / IV / V

Character Theory
Proof

Maximal proper subgroups of a minimal counterexample:

- Character Theory
- Local Analysis
- Galois Theory

Types I, II, III, IV, V
Proof

Maximal proper subgroups of a minimal counterexample:

Local Analysis

Galois Theory

Character Theory

Types
Proof

Maximal proper subgroups of a minimal counterexample:

Local Analysis

Galois Theory

Character Theory

Types 1 1 1 1 1 1
Ingredients

- Combinatorics, finite group theory
- Elementary arithmetic, elementary modular arithmetic
- Linear algebra
- Complex (algebraic) numbers
- Representation theory (complex and modular) of finite groups
- Character theory
- Finite fields, Galois theory
The Coq Proof Assistant

Formal Logic
Proof Assistant
Libraries

Type Theory
Coq
MathComp, Compcert, LoCo,...
Types, intuitively

Labels for the locus/range of arguments and values of functions:

\[f : \mathbb{R} \rightarrow \mathbb{R} \quad \text{g} : \mathbb{Z}/5\mathbb{Z} \rightarrow \mathbb{Z}/5\mathbb{Z} \]

\[x \mapsto x + 1 \quad x \mapsto x + 1 \]
Types, intuitively

Labels for the locus/range of arguments and values of functions:

\[
\begin{align*}
f & : \mathbb{R} \rightarrow \mathbb{R} \\
x & \mapsto x + 1
\end{align*}
\]

\[
\begin{align*}
g & : \mathbb{Z}/5\mathbb{Z} \rightarrow \mathbb{Z}/5\mathbb{Z} \\
x & \mapsto x + 1
\end{align*}
\]

Sometimes functions have parameters like \(n \in \mathbb{N} \) in:

\[
\begin{align*}
f_n & : \mathbb{C} \rightarrow \mathbb{C} \\
x & \mapsto x^n
\end{align*}
\]
Coq kernel

The task of the Coq kernel is to check typing judgments:

\[x_1 : T_1, \ldots, x_n : T_n \vdash t : T \]

- \(x_1, \ldots, x_n \) are variables;
- \(T_1, \ldots, T_n, T \) are types;
- \(x_1 : T_1, \ldots, x_n : T_n \) is a context;
- \(t \) is a term.

The judgment is read:

“In the context \(x_1 : T_1, \ldots, x_n : T_n \), the term \(t \) has type \(T \).”
Terms and Types

Terms include the usual terms of the λ-calculus:

- Variables: x, A, \ldots
- Functions: $(\text{fun } x \mapsto t)$, with x a variable and t a term
- Applications: $t_1 (t_2)$
- Constants: c

The rules defining what is a valid judgment explain how we can assign a type to a term, like:

$$n : \mathbb{N} \vdash \text{fun } x \mapsto x^n : \mathbb{C} \to \mathbb{C}$$
Two issues in formalization

- Find the right definition of objects;
- Find the right tools to assist formal proofs.
The Odd Order Theorem, formally

The statement of the formalized theorem is:

Theorem Feit_Thompson :
 forall (gT : finGroupType) (G : {group gT}),
 odd #|G| -> solvable G.

What do (gt : finGroupType) and (G : {group gT}) mean?
Subgroups

Most of finite group theory is about combining (sub)groups:

\[G \cap H, \quad G \times H, \quad G \rtimes H, \frac{G}{H} \ldots \]
Subgroups

Most of finite group theory is about combining (sub)groups:

\[G \cap H, \quad G \times H, \quad G \rtimes H, \quad G/H \ldots \]

- Mathematical notations often hide two levels:
 - sets
 - algebraic properties
Subgroups

Most of finite group theory is about combining (sub)groups:

\[G \cap H, \quad G \times H, \quad G \rtimes H, \quad G/H \ldots \]

- Mathematical notations often hide two levels:
 - sets
 - algebraic properties
- Heterogeneous operations would be very inconvenient.
Group Types

A finGroupType is:

• A finite type;
• With an element called 1;
• Equipped with an associative binary operation \ast and an inverse operation.
Group Types

A \texttt{finGroupType} is:

- A finite type;
- With an element called 1;
- Equipped with an associative binary operation \(\ast \) and an inverse operation.

A group \(G : \{\text{group } gT\} \), for \(gt : \text{finGroupType} \) is:

- A finite set of \(gT \);
- Which contains 1;
- And is stable under \(\ast \).
Group Types

• The (sub)set K is a group of $gT : \text{finGroupType}$.
• The (sub)set A is not a group.
Group Types

Distinct group types are defined for:

- Permutations of a set T;
- \mathbb{Z}_n for $n > 0$;
- \ldots
- Quotients of the form $./H$ for each distinct group H.
Group Types

Distinct group types are defined for:
- Permutations of a set T;
- \mathbb{Z}_n for $n > 0$;
- ...
- Quotients of the form $./H$ for each distinct group H.

Benefits:
- Homogeneous operations: $A \times B$, $A \cap B$, $A \rtimes B$, ...
- Constructions generalized to subsets (of a group): $N(A)$, A/B, ...
Finding the right representation

By:

• possibly generalizing the standard constructions;
• making operations total as often as possible;
• avoiding too fine-grained types.
Unification is an important component of the proof assistant.
Unification

Helps limiting the input required from the user in the commands building proofs:

\[a : \text{nat} \]
\[b : \text{nat} \]
\[H : \text{forall } x : \text{nat}, x + 0 = x \]

\[(a + b) + 0 = b + a \]
Unification

Helps limiting the input required from the user in the commands building proofs:

\[a : \text{nat} \]
\[b : \text{nat} \]
\[H : \forall x : \text{nat}, x + 0 = x \]

\[\text{rewrite } H. \]

\[(a + b) + 0 = b + a \]
Unification

Helps limiting the input required from the user in the commands building proofs:

\[
\begin{align*}
a & : \text{nat} \\
b & : \text{nat} \\
H & : \text{forall } x : \text{nat}, x + 0 = x \\
\end{align*}
\]

\[\text{------------------------------- rewrite } H.\]

\[\begin{align*}
(a + b) = b + a \\
\end{align*}\]
Unification

Helps limiting the input required from the user in the commands building proofs:

\[a : \text{nat} \]
\[b : \text{nat} \]
\[H : \text{forall } x : \text{nat}, x + 0 = x \]

\[\text{rewrite } H. \]
\[(a + b) = b + a \]

The pattern of the equation has been matched against the goal.
Unification is not enough

Lemma \texttt{cardG_gt0} \ gT \ (G : \{\text{group } gT\}) : 0 < \#\mid \text{set_of_grp } G \mid.
Unification is not enough

Lemma \texttt{cardG_gt0} \ gT \ (G : \{\text{group} \ gT\}) : 0 < \#| \text{set_of.grp} \ G|.

How to apply this theorem to:

\begin{align*}
G : & \{\text{group} \ gT\} \\
H : & \{\text{group} \ gT\} \\
\text{---} \\
0 : & < \#| (\text{set.of.grp} \ H) \cap ('N(\text{set.of.grp} \ G)) | \\
\end{align*}
Unification is not enough

Lemma \texttt{cardG_gt0} \ gT \ (G : \{\text{group gT}\}) : 0 < \#|\text{set_of_grp G}|.

How to apply this theorem to:

\begin{align*}
G & : \{\text{group gT}\} \\
H & : \{\text{group gT}\} \\
\end{align*}

\begin{align*}
\text{---} \\
0 & < \#|(\text{set_of_grp H}) \cap ('N(\text{set_of_grp G}))| \\
\end{align*}

which requires finding a group ? such that:

\begin{align*}
(\text{set_of_grp H})\cap (\text{'}N(\text{set_of_grp H})) & \equiv \text{set_of_grp ?} \\
\end{align*}
Unification is not enough

Lemma \texttt{cardG_gt0} \(gT \) (\(G : \{\text{group } gT\} \)) : \(0 < \#| \text{set_of_grp } G| \).

How to apply this theorem to:

\[
\begin{align*}
& G : \{\text{group } gT\} \\
& H : \{\text{group } gT\} \\
& \text{----------------------------------}
\end{align*}
\]

\[
0 < \#| (\text{set_of.grp } H) \cap (\text{’N(set_of.grp G)}) |
\]

which requires finding a group \(? \) such that:

\[
(\text{set_of.grp } H) \cap (\text{’N(set_of.grp H)}) \equiv \text{ set_of.grp } ?
\]

This requires **more** than unification...
Extending unification

Finding a group \(? \) such that:
\[
(set_{of_grp} H) \cap (\text{\texttt{'N}}(set_{of_grp} G)) \equiv set_{of_grp} ?
\]
is possible because we know that:
- For any groups \(K_1, K_2, K_1 \cap K_2 \) is a group;
- For any group \(K, N(K) \) is a group;

by canonical constructions.
Extending unification

Not only do we prove these theorems in the formal library, but we augment the unification algorithm with the following rules:

\[
\begin{align*}
K \text{ is a group} \\
N(K) \text{ is a group}
\end{align*}
\]

\[
\begin{align*}
K_1 \text{ is a group} & \quad K_2 \text{ is a group} \\
K_1 \cap K_2 \text{ is a group}
\end{align*}
\]

and let the unification algorithm trigger a Prolog like search.
Lemma \texttt{cardG_gt0 gT} \ G : \{\text{group gT}\} : \ 0 < \ | \ \text{set_of_grp} \ G|.

The command \texttt{(apply cardG_gt0)} solves the goal

\begin{align*}
G : \{\text{group gT}\} \\
H : \{\text{group gT}\}
\end{align*}

\begin{align*}
0 < |(\text{set_of_grp} \ H) \cap (\text{`}N(\text{set_of_grp} \ G))| \\
\end{align*}

using the canonical constructions of instances of groups.
Extending unification

Lemma \texttt{cardG_gt0} \ gT (G : \{\text{group gT}\}) : 0 < \#| \ G |.

The command \texttt{(apply cardG_gt0)} solves the goal

\begin{verbatim}
G : \{\text{group gT}\}
H : \{\text{group gT}\}
==
0 < \#|H \cap \ 'N(G)|
\end{verbatim}

and the function \texttt{set_of_grp} is in fact not displayed (nor input).
Check your favourite undergraduate linear algebra textbook:

“Let A be a square matrix. Then:

$$\text{Det} \ (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}.$$
Mathematics on the paper

Let A be a square matrix. Then:

$$\text{Det} \ (A) = \sum_{\sigma \in S_n} \varepsilon_\sigma \prod_i a_{\sigma(i), i}$$
Mathematics on the paper

Let A be a square matrix. Then:

$$\text{Det } (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}$$

- A is square
Mathematics on the paper

Let A be a square matrix. Then:

$$\ Det \ (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
Let A be a square matrix. Then:

$$\text{Det } (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_i a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- \sum
Mathematics on the paper

Let A be a square matrix. Then:

$$\text{Det } (A) = \sum_{\sigma \in S_n} \epsilon_\sigma \prod_i a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- Σ denotes the iteration of a binary, commutative, associative operation with a neutral element.
Mathematics on the paper

Let A be a square matrix. Then:

$$\det(A) = \sum_{\sigma \in S_n} \varepsilon_{\sigma} \prod_{i} a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- \sum denotes the iteration of a binary, commutative, associative operation with a neutral element.
- \prod
Mathematics on the paper

Let A be a square matrix. Then:

$$\text{Det} (A) = \sum_{\sigma \in S_n} \epsilon_\sigma \prod_{i} a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- Σ denotes the iteration of a binary, commutative, associative operation with a neutral element.
- Π denotes the iteration of a binary, commutative, associative operation with a neutral element, which is distributive over the one denoted by Σ.
Let A be a square matrix. Then:

$$\text{Det } (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- Σ denotes the iteration of a binary, commutative, associative operation with a neutral element.
- Π denotes the iteration of a binary, commutative, associative operation with a neutral element, which is distributive over the one denoted by Σ.
- Obviously,
Mathematics on the paper

Let A be a square matrix. Then:

$$\text{Det} (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i)},i$$

- A is square of size $n \times n$, hence the type of permutations S_n and the range of the index i.
- Σ denotes the iteration of a binary, commutative, associative operation with a neutral element.
- Π denotes the iteration of a binary, commutative, associative operation with a neutral element, which is distributive over the one denoted by Σ.
- Obviously, the coefficients of the matrix should live in a set equipped with a ring structure, and the iterated operations are the addition and product of that ring respectively.
Mathematics for the computer

Let A be a square matrix. Then:

$$\text{Det} (A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_i a_{\sigma(i),i}$$
Let A be a square matrix. Then:

$$\text{det}(A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}$$

- In LaTeX:
 \[
 \textsf{det}(A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_{i} a_{\sigma(i),i}
 \]

- In Coq:
 [Coq code]

Assia Mahboubi – Computer-Checked Mathematics
Let A be a square matrix. Then:

$$\text{Det}(A) = \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_i a_{\sigma(i),i}$$

- In \LaTeX:
 \begin{align*}
 \text{Det}(A) &= \sum_{\sigma \in S_n} \epsilon_{\sigma} \prod_i a_{\sigma(i),i} \\
 \text{In Coq:}
 \begin{align*}
 \text{Definition det} \ (R : \text{ringType}) \ n \ (A : \ 'M[R_n]) : \ R := \\
 \sum_{s : \ 'S_n}
 \end{align*}
 \end{align*}
Programmable type inference

It acts like the mind of a trained mathematical reader as it:

- Restores (computationally) the assumptions left implicit in paper description;
- Decreases the amount of information provided by the user;
- Helps keeping the statements readable;
- Perform proof automation.

In practice: type inference + proof-search in unification.
Bookshelf for the Odd Order Theorem
Implementations of several algorithms of interest, together with correctness proofs:

- Depth-first search
- Factorization in primes
- (pseudo-)Euclidean division(s)
- Gaussian elimination, LUP matrix decomposition
- Quantifier elimination(s)
- ...

Most of them are used for constructing abstract witnesses rather than for performing large scale computations.
Specific issues

- No heavy computations
- No generic purpose automated reasoning was used
- No domain-specific proof search tool was needed
- No widely branching tree like structures and nested case/induction reasoning

But hopefully a large body of reusable libraries of formal algebra.
Thank you

(Picture courtesy of Alejandro Guijarro)